The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis.

نویسندگان

  • B J Merrill
  • C Holm
چکیده

To identify in vivo pathways that compensate for impaired proliferating cell nuclear antigen (PCNA or Pol30p in yeast) activity, we performed a synthetic lethal screen with the yeast pol30-104 mutation. We identified nine mutations that display synthetic lethality with pol30-104; three mutations affected the structural gene for the large subunit of replication factor C (rfc1), which loads PCNA onto DNA, and six mutations affected three members of the RAD52 epistasis group for DNA recombinational repair (rad50, rad52 and rad57). We also found that pol30-104 displayed synthetic lethality with mutations in other members of the RAD52 epistasis group (rad51 and rad54), but not with mutations in members of the RAD3 nor the RAD6 epistasis group. Analysis of nine different pol30 mutations shows that the requirement for the RAD52 pathway is correlated with a DNA replication defect but not with the relative DNA repair defect caused by pol30 mutations. In addition, mutants that require RAD52 for viability (pol30-100, pol30-104, rfc1-1 and rth1delta) accumulate small single-stranded DNA fragments during DNA replication in vivo. Taken together, these data suggest that the RAD52 pathway is required when there are defects in the maturation of Okazaki fragments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A requirement for recombinational repair in Saccharomyces cerevisiae is caused by DNA replication defects of mec1 mutants.

To examine the role of the RAD52 recombinational repair pathway in compensating for DNA replication defects in Saccharomyces cerevisiae, we performed a genetic screen to identify mutants that require Rad52p for viability. We isolated 10 mec1 mutations that display synthetic lethality with rad52. These mutations (designated mec1-srf for synthetic lethality with rad-fifty-two) simultaneously caus...

متن کامل

In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair.

To identify the regions of the proliferating cell nuclear antigen (PCNA) that are important for function in vivo, we used random mutagenesis to isolate 10 cold-sensitive (Cs-) and 31 methyl methanesulfonate-sensitive (Mmss) mutations of the PCNA gene (POL30) in Saccharomyces cerevisiae. Unlike the Mmss mutations, the Cs- mutations are strikingly clustered in the interdomain region of the three-...

متن کامل

The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing.

The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical intera...

متن کامل

Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein...

متن کامل

Rad51 protein controls Rad52-mediated DNA annealing.

In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 148 2  شماره 

صفحات  -

تاریخ انتشار 1998